Discussion of Jones & Marinescu (2018)

The Labor Market Impacts of Universal and Permanent Cash Transfers

Lorenz Kueng

Northwestern University and NBER

AEA Philadelphia, January 7, 2018

Very interesting paper! Lots to think about...

Outline of Discussion

- 1. The Alaska Permanent Fund Dividend (PFD)
- 2. Discussion of methodology and main results
- 3. Questions & suggestions for further/future research

Alaska Permanent Fund Dividend (PFD) = annual payments from state's broadly-diversified wealth fund

dividend size is independent of local economy

Important characteristics of PFD for excess sensitivity tests:

- 1. *nominally large* and *lump-sum*
 - eligibility predetermined by presence during previous year
 - dividend is \$1,700 on average per person! (in real \$ of 2014)
 - avg family size = $2.8 \Rightarrow$ \$4,800 every October
- 2. predetermined, regular, and salient
 - based on June numbers, announced in Sept., paid in October
 - highly predictable: 5-year moving-average of fund's income
 - well covered by local media during the year & fund's website

Independence from Local Economy: Portfolio allocation from Alaska Permanent Fund's website

Independence from Local Economy: Oil Revenue is only small fraction of fund's market value

Size & Predictability: Divided Forecast using dividend rule set in state law based on APF's 'income from assets'

Salience: Dividend forecast by Local Newspapers (narratives)

Potential outcome framework:

$$y_{T,t}(\tau) = \alpha_{T,t} + y_{T,t}(c) \quad \text{if } t > T_0$$

 $y_{T,t}(d_{T,t})$: observed outcome for Treated state (Alaska)

treatment (dosage): $d_{s,t} = \begin{cases} \tau, \text{ if state} = \text{Alaska } \& t > T_0 \\ c, \text{ if state} \neq \text{Alaska} \mid t \leq T_0 \end{cases}$

 $\alpha_{T,t}$: time-varying treatment effect

Potential outcome framework:

$$y_{T,t}(\tau) = \alpha_{T,t} + y_{T,t}(c) \quad \text{if } t > T_0$$

 $y_{T,t}(d_{T,t})$: observed outcome for Treated state (Alaska)

treatment (dosage): $d_{s,t} = \begin{cases} \tau, \text{ if state} = \text{Alaska } \& t > T_0 \\ c, \text{ if state} \neq \text{Alaska} \mid t \leq T_0 \end{cases}$

 $\alpha_{T,t}$: time-varying treatment effect

 \Rightarrow Problem: Need to estimate counterfactual $y_{T,t}(c)$

 \Rightarrow Problem: Need to estimate counterfactual $y_{T,t}(c)$

Approach: Use matching to find weighted average that best mimicks the outcome for Alaska, $y_{T,t}(c)$

 \Rightarrow Problem: Need to estimate counterfactual $y_{T,t}(c)$

Approach: Use matching to find weighted average that best mimicks the outcome for Alaska, $y_{T,t}(c)$

<u>Step 1</u>: Find weights of C-states that best match T in $t < T_0$

$$\widehat{w} = \underset{w \ge 0, \sum w_s = 1}{\operatorname{argmax}} (X_T - w'X_C)' V(X_T - w'X_C)$$

 \Rightarrow Problem: Need to estimate counterfactual $y_{T,t}(c)$

Approach: Use matching to find weighted average that best mimicks the outcome for Alaska, $y_{T,t}(c)$

<u>Step 1</u>: Find weights of C-states that best match T in $t < T_0$

$$\widehat{w} = \underset{w \ge 0, \sum w_s = 1}{\operatorname{argmax}} (X_T - w'X_C)' V(X_T - w'X_C)$$

<u>Step 2</u>: Use \widehat{w} to predict counterfactual ("synthetic") T

$$\hat{y}_{T,t}(c) = \hat{w}' y_{C,t} \quad \text{if } t > T_0$$

 \Rightarrow Problem: Need to estimate counterfactual $y_{T,t}(c)$

Approach: Use matching to find weighted average that best mimicks the outcome for Alaska, $y_{T,t}(c)$

<u>Step 1</u>: Find weights of C-states that best match T in $t < T_0$

$$\widehat{w} = \operatorname*{argmax}_{w \ge 0, \sum w_S = 1} (X_T - w'X_C)' V(X_T - w'X_C)$$

<u>Step 2</u>: Use \hat{w} to predict counterfactual ("synthetic") T

$$\hat{y}_{T,t}(c) = \hat{w}' y_{C,t} \quad \text{if } t > T_0$$

$$\Rightarrow \hat{\alpha}_{T,t} = y_{T,t} (\tau) - \hat{y}_{T,t}(c) \qquad \text{if } t > T_0$$

Main Results

Two main findings:

- 1. Fairly tight non-result for extensive margin: ER, LFP
- 2. Large effect on intensive margin: part-time rate

Main Results

Two main findings:

- 1. Fairly tight non-result for extensive margin: ER, LFP
- 2. Large effect on <u>intensive</u> margin: part-time rate Statistically and economically <u>insignificant</u> effect on employment rate
- 95%-CI rules out effects larger than 5% of ER mean (64% ± 3%)
- Point estimates are positive → no slacking off with permanent transfers (<u>external validity</u>: Also true for universal basic income?)
- Survey in 2017 finds that "majority of Alaskans report that the PFD has little to no effect on work." (→ *Is asking people underrated in econ?*)

Main Results

Two main findings:

- 1. Fairly tight non-result for extensive margin: ER, LFP
- 2. Large effect on <u>intensive</u> margin: part-time rate Statistically and economically <u>significant</u> effect on part-time employment
- 18% increase in part-time employment (from 10.3% to 12.1%)!
- What are the potential mechanisms?

Labor demand response to temporary peak-consumption (eg retail sales) or persistent reductions in labor supply (e.g. secondary earners, mothers)?

Excess Sensitivity: Cumulative MPC ~25%, stable after 1 quarter

Durables: Cumulative MPC - strong intertemporal substitution

Questions & Suggestions

Could you look for <u>non-linearities</u>?

- Extensive margin non-results might disappear for larger transfers such as universal basic income
 - e.g. 20-30k allows for labor force exit, but 5k doesn't
- Could scale transfers by income, since income effect is larger for low-income people

Questions & Suggestions

Could you look for <u>heterogeneous effects</u>?

• Maybe larger effects on marginally attached workers:

1) secondary earners

- 2) new mothers(1& 2 might explain in female/male difference)
 - 3) teenagers
 - 4) 'enterpreneurs', newly self-employed
 - 5) by sector: retail sector to satisfy peak demand?